skip to main content


Search for: All records

Creators/Authors contains: "Cox, Christian L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The slender anole, Anolis apletophallus, is a small arboreal lizard of the rainforest understory of central and eastern Panama. This species has been the subject of numerous ecological and evolutionary studies over the past 60 years as a result of attributes that make it especially amenable to field and laboratory science. Slender anoles are highly abundant, short-lived (nearly 100% annual turnover), easy to manipulate in both the lab and field, and are ubiquitous in the forests surrounding the Smithsonian Tropical Research Institute in Panama, where researchers have access to high-quality laboratory facilities. Here, we present a high-quality genome for the slender anole, which is an important new resource for studying this model species. We assembled and annotated the slender anole genome by combining 3 technologies: Oxford Nanopore, 10× Genomics Linked-Reads, and Dovetail Omni-C. We compared this genome with the recently published brown anole (Anolis sagrei) and the canonical green anole (Anolis carolinensis) genomes. Our genome is the first assembled for an Anolis lizard from mainland Central or South America, the regions that host the majority of diversity in the genus. This new reference genome is one of the most complete genomes of any anole assembled to date and should facilitate deeper studies of slender anole evolution, as well as broader scale comparative genomic studies of both mainland and island species. In turn, such studies will further our understanding of the well-known adaptive radiation of Anolis lizards.

     
    more » « less
  2. Free, publicly-accessible full text available October 1, 2024
  3. Abstract

    Phenotypic sexual dimorphism often involves the hormonal regulation of sex-biased expression for underlying genes. However, it is generally unknown whether the evolution of hormonally mediated sexual dimorphism occurs through upstream changes in tissue sensitivity to hormone signals, downstream changes in responsiveness of target genes, or both. Here, we use comparative transcriptomics to explore these possibilities in 2 species of Sceloporus lizards exhibiting different patterns of sexual dichromatism. Sexually dimorphic S. undulatus develops blue and black ventral coloration in response to testosterone, while sexually monomorphic S. virgatus does not, despite exhibiting similar sex differences in circulating testosterone levels. We administered testosterone implants to juveniles of each species and used RNAseq to quantify gene expression in ventral skin. Transcriptome-wide responses to testosterone were stronger in S. undulatus than in S. virgatus, suggesting species differences in tissue sensitivity to this hormone signal. Species differences in the expression of genes for androgen metabolism and sex hormone-binding globulin were consistent with this idea, but expression of the androgen receptor gene was higher in S. virgatus, complicating this interpretation. Downstream of androgen signaling, we found clear species differences in hormonal responsiveness of genes related to melanin synthesis, which were upregulated by testosterone in S. undulatus, but not in S. virgatus. Collectively, our results indicate that hormonal regulation of melanin synthesis pathways contributes to the development of sexual dimorphism in S. undulatus, and that changes in the hormonal responsiveness of these genes in S. virgatus contribute to the evolutionary loss of ventral coloration.

     
    more » « less
  4. Sex differences in gene expression tend to increase with age across a variety of species, often coincident with the development of sexual dimorphism and maturational changes in hormone levels. However, because most transcriptome-wide characterizations of sexual divergence are framed as comparisons of sex-biased gene expression across ages, it can be difficult to determine the extent to which age-biased gene expression within each sex contributes to the emergence of sex-biased gene expression. Using RNAseq in the liver of the sexually dimorphic brown anole lizard ( Anolis sagrei ), we found that a pronounced increase in sex-biased gene expression with age was associated with a much greater degree of age-biased gene expression in males than in females. This pattern suggests that developmental changes in males, such as maturational increases in circulating testosterone, contribute disproportionately to the ontogenetic emergence of sex-biased gene expression. To test this hypothesis, we used four different experimental contrasts to independently characterize sets of genes whose expression differed as a function of castration and/or treatment with exogenous testosterone. We found that genes that were significantly male-biased in expression or upregulated as males matured tended to be upregulated by testosterone, whereas genes that were female-biased or downregulated as males matured tended to be downregulated by testosterone. Moreover, the first two principal components describing multivariate gene expression indicated that exogenous testosterone reversed many of the feminizing effects of castration on the liver transcriptome of maturing males. Collectively, our results suggest that developmental changes that occur in males contribute disproportionately to the emergence of sex-biased gene expression in the Anolis liver, and that many of these changes are orchestrated by androgens such as testosterone. 
    more » « less
  5. Synopsis

    Sexual size dimorphism is widespread in nature and often develops through sexual divergence in growth trajectories. In vertebrates, the growth hormone/insulin-like growth factor (GH/IGF) network is an important regulator of growth, and components of this network are often regulated in sex-specific fashion during the development of sexual size dimorphism. However, expression of the GH/IGF network is not well characterized outside of mammalian model systems, and the extent to which species differences in sexual size dimorphism are related to differences in GH/IGF network expression is unclear. To begin bridging this gap, we compared GH/IGF network expression in liver and muscle from 2 lizard congeners, one with extreme male-biased sexual size dimorphism (brown anole, Anolis sagrei), and one that is sexually monomorphic in size (slender anole, A. apletophallus). Specifically, we tested whether GH/IGF network expression in adult slender anoles resembles the highly sex-biased expression observed in adult brown anoles or the relatively unbiased expression observed in juvenile brown anoles. We found that adults of the 2 species differed significantly in the strength of sex-biased expression for several key upstream genes in the GH/IGF network, including insulin-like growth factors 1 and 2. However, species differences in sex-biased expression were minor when comparing adult slender anoles to juvenile brown anoles. Moreover, the multivariate expression of the entire GH/IGF network (as represented by the first two principal components describing network expression) was sex-biased for the liver and muscle of adult brown anoles, but not for either tissue in juvenile brown anoles or adult slender anoles. Our work suggests that species differences in sex-biased expression of genes in the GH/IGF network (particularly in the liver) may contribute to the evolution of species differences in sexual size dimorphism.

     
    more » « less
  6. Rudi, Knut (Ed.)
    ABSTRACT As rising temperatures threaten biodiversity across the globe, tropical ectotherms are thought to be particularly vulnerable due to their narrow thermal tolerance ranges. Nevertheless, physiology-based models highlighting the vulnerability of tropical organisms rarely consider the contributions of their gut microbiota, even though microbiomes influence numerous host traits, including thermal tolerance. We combined field and lab experiments to understand the response of the slender anole lizard ( Anolis apletophallus ) gut microbiome to climatic shifts of various magnitude and duration. First, to examine the effects of long-term climate warming in the wild, we transplanted lizards from the mainland Panama to a series of warmer islands in the Panama Canal and compared their gut microbiome compositions after three generations of divergence. Next, we mimicked the effects of a short-term “heat-wave” by using a greenhouse experiment and explored the link between gut microbiome composition and lizard thermal physiology. Finally, we examined variation in gut microbiomes in our mainland population in the years both before and after a naturally occurring drought. Our results suggest that slender anole microbiomes are surprisingly resilient to short-term warming. However, both the taxonomic and predicted functional compositions of the gut microbiome varied by sampling year across all sites, suggesting that the drought may have had a regional effect. We provide evidence that short-term heat waves may not substantially affect the gut microbiota, while more sustained climate anomalies may have effects at broad geographic scales. IMPORTANCE As climate change progresses, it is crucial to understand how animals will respond to shifts in their local environments. One component of this response involves changes in the microbial communities living in and on host organisms. These “microbiomes” can affect many processes that contribute to host health and survival, yet few studies have measured changes in the microbiomes of wild organisms experiencing novel climatic conditions. We examined the effects of shifting climates on the gut microbiome of the slender anole lizard ( Anolis apletophallus ) by using a combination of field and laboratory studies, including transplants to warm islands in the Panama Canal. We found that slender anole microbiomes remain stable in response to short-term warming but may be sensitive to sustained climate anomalies, such as droughts. We discuss the significance of these findings for a species that is considered highly vulnerable to climate change. 
    more » « less
  7. Abstract

    The spectral characteristics of vertebrate ocular lenses affect the image of the world that is projected onto the retina, and thus help shape diverse visual capabilities. Here, we tested whether amphibian lens transmission is driven by adaptation to diurnal activity (bright light) and/or scansorial habits (complex visual environments).

    Spectral transmission through the lenses of 79 species of frogs and six species of salamanders was measured, and data for 29 additional frog species compiled from published literature. Phylogenetic comparative methods were used to test ecological explanations of variation in lens transmission and to test for selection across traits.

    Lenses of diurnal (day‐active) and scansorial (climbing) frogs transmitted significantly less shortwave light than those of non‐diurnal or non‐scansorial amphibians, and evolutionary modelling suggested that these differences have resulted from differential selection.

    The presence of shortwave‐transparent lenses was common among the sampled amphibians, which implies that many are sensitive to shortwave light to some degree even in the absence of visual pigments maximally sensitive in the UV. This suggests that shortwave light, including UV, could play an important role in amphibian behaviour and ecology.

    Shortwave‐absorbing lens pigments likely provide higher visual acuity to diurnally active frogs of multiple ecologies and to nocturnally active scansorial frogs. This new mechanistic understanding of amphibian visual systems suggests that shortwave‐filtering lenses are adaptive not only in daylight conditions but also in those scotopic conditions where high acuity is advantageous.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  8. Abstract

    Sexual selection reflects the joint contributions of precopulatory selection, which arises from variance in mating success, and postcopulatory selection, which arises from variance in fertilization success. The relative importance of each episode of selection is variable among species, and comparative evidence suggests that traits targeted by precopulatory selection often covary in expression with those targeted by postcopulatory selection when assessed across species, although the strength and direction of this association varies considerably among taxa. We tested for correlated evolution between targets of pre‐ and postcopulatory selection using data on sexual size dimorphism (SSD) and testis size from 151 species of squamate reptiles (120 lizards, 31 snakes). In squamates, male–male competition for mating opportunities often favors large body size, such that the degree of male‐biasedSSDis associated with the intensity of precopulatory selection. Likewise, competition for fertilization often favors increased sperm production, such that testis size (relative to body size) is associated with the intensity of postcopulatory selection. Using both conventional and phylogenetically based analyses, we show that testis size consistently decreases as the degree of male‐biasedSSDincreases across lizards and snakes. This evolutionary pattern suggests that strong precopulatory selection may often constrain the opportunity for postcopulatory selection and that the relative importance of each selective episode may determine the optimal resolution of energy allocation trade‐offs between traits subject to each form of sexual selection.

     
    more » « less